论文标题
共形和动力学耦合作为同一理论的两个约旦框架
Conformal and kinetic couplings as two Jordan frames of the same theory
论文作者
论文摘要
非最小标量调整器(ST)理论可能会允许爱因斯坦框架表示,其中重力由爱因斯坦 - 希尔伯特(Einstein-Hilbert)作用加上标量扇区。有些sts成为{\ em minimal} einstein-scalar(MES)理论,著名的例子是Brans-Dicke和$ rx^2 $。具有{\ em衍生物}耦合的ST理论也可以通过异常转换将其简化为爱因斯坦框架,但是通常,其标量扇区将包含较高的衍生术语。在这里,我们引起人们对新的palatini动力学耦合理论的关注,该理论可以通过可逆的不形式转化将其简化为纯ME。然后可以将该理论转换为另一个ST的Jordan框架,$ rx^2 $,这也承认了对MES的可逆转换。两种对ME的双重理论将是{\ em依次是双重},并且可以被视为同一理论的两个不同的Jordan框架。两种选择的理论都违反了无效的能源条件。转换相同的单数MES溶液,我们在两个约旦框架中都发现了降低的迹象,但是在动力学理论的框架中,这些迹象更为明显,在宇宙学的情况下,导致了创世纪型行为。
Non-minimal scalar-tensor (ST) theories may admit an Einstein frame representation, where gravity is described by the Einstein-Hilbert action plus the scalar sector. Some STs become just {\em minimal} Einstein-scalar (MES) theories, notable examples are Brans-Dicke and $Rϕ^2$. ST theories with {\em derivative} coupling can also be reduced to an Einstein frame by disformal transformations, but, as a rule, their scalar sector will contain higher derivative terms. Here we draw attention to a new Palatini kinetically coupled theory which can be reduced to pure MES by an invertible disformal transformation. This theory can then be converted into the Jordan frame of another ST, $Rϕ^2$, which also admits an invertible transformation to MES. Two theories, each of which is dual to MES, will be {\em sequentially dual} to each other and can be considered as two different Jordan frames of the same theory. Both chosen theories violate null energy condition. Transforming the same singular MES solutions, we find the desingularization signs in both Jordan frames, but these are more pronouned in the framework of kinetic theory, leading, in the cosmological case, to Genesis-type behavior.