论文标题
分子响应特性的量子计算
Quantum computation of molecular response properties
论文作者
论文摘要
准确地预测分子的反应特性,例如使用量子力学的动态极化性和超极化性,这是材料和药物设计中广泛应用的长期挑战。随着系统尺寸的增加,许多电子希尔伯特空间的指数增长阻碍了量子化学中的经典模拟技术。在这项工作中,我们提出了一种用于在量子计算机上计算线性和非线性分子响应特性的算法,首先将目标特性重新划分为更适合于量子计算的对称性表达式,通过在辅助量子状态下引入一组辅助状态,然后通过求解这些辅助状态,通过求解相应的量化平等系统,以实现量子计算机。一方面,我们证明使用量子线性系统算法[Harrow等,Phys。莱特牧师。 103,150502(2009)]作为子例程,所提出的算法仅在系统尺寸上以多项式缩放,而不是指数较大的希尔伯特空间的尺寸,因此在现有的经典算法上实现了指数加速。另一方面,我们引入了所提出的算法的变分杂种量子古典变体,该变体对于近期量子设备更实用。
Accurately predicting response properties of molecules such as the dynamic polarizability and hyperpolarizability using quantum mechanics has been a long-standing challenge with widespread applications in material and drug design. Classical simulation techniques in quantum chemistry are hampered by the exponential growth of the many-electron Hilbert space as the system size increases. In this work, we propose an algorithm for computing linear and nonlinear molecular response properties on quantum computers, by first reformulating the target property into a symmetric expression more suitable for quantum computation via introducing a set of auxiliary quantum states, and then determining these auxiliary states via solving the corresponding linear systems of equations on quantum computers. On one hand, we prove that using the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] as a subroutine the proposed algorithm scales only polynomially in the system size instead of the dimension of the exponentially large Hilbert space, and hence achieves an exponential speedup over existing classical algorithms. On the other hand, we introduce a variational hybrid quantum-classical variant of the proposed algorithm, which is more practical for near-term quantum devices.