论文标题

使用卷积神经网络审查GWAC网络检测到的光学瞬态候选者

Vetting the optical transient candidates detected by the GWAC network using convolutional neural networks

论文作者

Turpin, Damien, Ganet, M., Antier, S., Bertin, E., Xin, L. P., Leroy, N., Wu, C., Xu, Y., Han, X. H., Cai, H. B., Li, H. L., Lu, X. M., Wei, J. Y.

论文摘要

由于天文学家采用的观察技术和策略的快速发展,在过去的二十年中,通过众多天体物理使者对瞬态天空进行了观察。现在,它要求能够在太空中和地面上与Instruments一起协调多波长和多理智的随访活动,共同能够以高成像的节奏和占空比扫描大部分的Thesky。在光学域中,覆盖数十至数百个平方度的广泛视野望远镜的关键挑战是,每晚在合理的时间内每晚进行数百至数百万至数千个光学传输(OT)候选者的识别和分类。在过去的十年中,已经开发了基于机器学习方法的纽瓦特计算工具,以执行较低的计算时间和高分类效率的thosetasks。在本文中,我们使用卷积神经网络(CNN)介绍了有效的分类方法,以在光学域中的天体物理图像中错误地检测到任何bogus。我们设计了此工具来改善距离接地宽场Anglecameras(GWAC)望远镜的OT检测管道的性能,这是一个机器人望远镜网络的网络,旨在以15秒的成像成像节奏,旨在监视光学传输的天空降至R = 16。我们将训练有素的分类器应用于由实时检测台线检测到的1472个GWAC候选者样本。它产生了良好的分类性能,分类良好的事件的94%和4%的Afalse正率。

The observation of the transient sky through a multitude of astrophysical messengers hasled to several scientific breakthroughs these last two decades thanks to the fast evolution ofthe observational techniques and strategies employed by the astronomers. Now, it requiresto be able to coordinate multi-wavelength and multi-messenger follow-up campaign withinstruments both in space and on ground jointly capable of scanning a large fraction of thesky with a high imaging cadency and duty cycle. In the optical domain, the key challengeof the wide field of view telescopes covering tens to hundreds of square degrees is to dealwith the detection, the identification and the classification of hundreds to thousands of opticaltransient (OT) candidates every night in a reasonable amount of time. In the last decade, newautomated tools based on machine learning approaches have been developed to perform thosetasks with a low computing time and a high classification efficiency. In this paper, we presentan efficient classification method using Convolutional Neural Networks (CNN) to discard anybogus falsely detected in astrophysical images in the optical domain. We designed this toolto improve the performances of the OT detection pipeline of the Ground Wide field AngleCameras (GWAC) telescopes, a network of robotic telescopes aiming at monitoring the opticaltransient sky down to R=16 with a 15 seconds imaging cadency. We applied our trainedCNN classifier on a sample of 1472 GWAC OT candidates detected by the real-time detectionpipeline. It yields a good classification performance with 94% of well classified event and afalse positive rate of 4%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源