论文标题
通过杂化连续元 - 分子动力学方法计算离子离子重组速率系数
Calculation of the Ion-Ion Recombination Rate Coefficient via a Hybrid Continuum- Molecular Dynamics Approach
论文作者
论文摘要
离子离子重组速率系数的准确计算一直具有长期关注,因为它控制着气相系统和气溶胶中的离子浓度。我们描述了混合连续性分子动力学方法的发展,以确定离子离子重组速率系数。该方法基于经典用于过渡状态碰撞现象的极限球方法。当离子彼此之间足够远时,离子离子相对运动通过扩散方程描述,而在临界距离内,分子动力学(MD)模拟用于模拟离子离子运动。 MD模拟使用琥珀色场以及通过考虑原子上的部分电荷进行参数化。离子中性气体碰撞是在两个相互排斥的立方域中建模的,每个立方体由103个气体原子组成,它们保持在整个计算过程中的重组。报告了NH4+重组的示例计算与NO2-在HE中的计算,其压力范围从10 kPa到10,000 kPa。在HE中的100 kPa重组速率系数(1.0 x 10-12 m3 S-1)的文献值比较中,发现了极好的一致性。我们还恢复了在大气压下与压力的实验观察到的重组率系数的增加,并在高压连续性极限下观察到的重组速率系数降低。我们还发现,基于langevin动力学模拟的无量纲带电粒子碰撞速率系数的最近开发的速率系数的非限制形式是一致的。
Accurate calculation of the ion-ion recombination rate coefficient has been of long-standing interest, as it controls the ion concentration in gas phase systems and in aerosols. We describe the development of a hybrid continuum-molecular dynamics approach to determine the ion-ion recombination rate coefficient. The approach is based on the limiting sphere method classically used for transition regime collision phenomena in aerosols. When ions are sufficiently far from one another, ion-ion relative motion is described by diffusion equations while within a critical distance, molecular dynamics (MD) simulations are used to model ion-ion motion. MD simulations are parameterized using the AMBER force-field as well as by considering partial charges on atoms. Ion-neutral gas collisions are modeled in two mutually exclusive cubic domains composed of 103 gas atoms each, which remain centered on the recombining ions throughout calculations. Example calculations are reported for NH4+ recombination with NO2- in He, across a pressure range from 10 kPa to 10,000 kPa. Excellent agreement is found in comparison of calculations to literature values for the 100 kPa recombination rate coefficient (1.0 x 10-12 m3 s-1) in He. We also recover the experimentally observed increase in recombination rate coefficient with pressure at sub-atmospheric pressures, and the observed decrease in recombination rate coefficient in the high pressure continuum limit. We additionally find that non-dimensionalized forms of rate coefficients are consistent with recently developed equations for the dimensionless charged particle-ion collision rate coefficient based on Langevin dynamics simulations.