论文标题
关于群体的HAAR挖掘表示
On Haar digraphical representations of groups
论文作者
论文摘要
在本文中,我们在Haar Digraphs的背景下扩展了Dighaphical常规表示的概念。鉴于$ g $的组,$ g $上的{\ em haar digraph} $γ$是具有两部分$ \ {x,y \} $的两部分挖掘物,使得$ g $是一组自动形态$γ$的自动形态,在$ x $上定期使用$ x $。我们说$ g $承认{\ em haar dighaphical表示}(简称HDR),如果存在超过$ g $的haar digraph,以至于其自动形态组是同构为$ g $的。在本文中,我们对有限群体进行了分类。
In this paper we extend the notion of digraphical regular representations in the context of Haar digraphs. Given a group $G$, a {\em Haar digraph} $Γ$ over $G$ is a bipartite digraph having a bipartition $\{X,Y\}$ such that $G$ is a group of automorphisms of $Γ$ acting regularly on $X$ and on $Y$. We say that $G$ admits a {\em Haar digraphical representation} (HDR for short), if there exists a Haar digraph over $G$ such that its automorphism group is isomorphic to $G$. In this paper, we classify finite groups admitting a HDR.