论文标题
在平均失真约束下进行有损源编码的一种镜头方法
One shot approach to lossy source coding under average distortion constraints
论文作者
论文摘要
本文在平均失真约束下对有损压缩问题进行了一次镜头分析。我们计算随机代码的确切预期失真。结果使用新定义的功能$ \ tilde {d}(z,q_y)$作为积分公式给出,其中$ q_y $是随机编码分布,而[0,1] $中的$ z \。当我们将代码分布插入$ q_y $时,此功能会产生代码的平均失真,因此使用相同的功能提供了相反的结果。为$ \ tilde {d}(z,q_y)$提供了两个替代公式,第一个涉及到某些辅助分布上的超emum,这与通道编码的元反应相似,而另一个则涉及到众所周知的shannon Shannon Sannon贬低函数的幼体。
This paper presents a one shot analysis of the lossy compression problem under average distortion constraints. We calculate the exact expected distortion of a random code. The result is given as an integral formula using a newly defined functional $\tilde{D}(z,Q_Y)$ where $Q_Y$ is the random coding distribution and $z\in [0,1]$. When we plug in the code distribution as $Q_Y$, this functional produces the average distortion of the code, thus provide a converse result utilizing the same functional. Two alternative formulas are provided for $\tilde{D}(z,Q_Y)$, the first involves a supremum over some auxiliary distribution $Q_X$ which has resemblance to the channel coding meta-converse and the other involves an infimum over channels which resemble the well known Shannon distortion-rate function.