论文标题

自动分化主要的特征力量及其在量子物理中的应用

Automatic differentiation of dominant eigensolver and its applications in quantum physics

论文作者

Xie, Hao, Liu, Jin-Guo, Wang, Lei

论文摘要

我们研究了主要的特征层的自动分化,其中仅获得一小部分特征值和相应的特征向量。通过主要的特征索的反向传播涉及求解某些低级线性系统,而无需直接访问问题的整个问题。此外,可以再次方便地区分向后的,这意味着原则上可以获得主导特征分解过程的任意高阶衍生物。这些结果允许构建有效的主要特征素原原始,该原始物质在量子物理学中具有广泛的应用。作为示范,我们通过精确的对角度方法计算了1D横向场ISING模型的基态能量和忠诚度易感性的二阶导数。我们还通过对均匀基质产物状态的优化进行基于梯度的优化,在热力​​学极限中计算同一模型的基态能量。通过以完全可区分的方式对这些计算任务进行编程,人们可以有效地处理非常大的矩阵的主要特征分类,同时仍然共享可区分编程范式的各种优势,尤其是实施的通用性质,并且没有乏味的人类努力分析分析的人类阶段。

We investigate the automatic differentiation of dominant eigensolver where only a small proportion of eigenvalues and corresponding eigenvectors are obtained. Backpropagation through the dominant eigensolver involves solving certain low-rank linear systems without direct access to the full spectrum of the problem. Furthermore, the backward pass can be conveniently differentiated again, which implies that in principle one can obtain arbitrarily higher order derivatives of the dominant eigen-decomposition process. These results allow for the construction of an efficient dominant eigensolver primitive, which has wide applications in quantum physics. As a demonstration, we compute second order derivative of the ground state energy and fidelity susceptibility of 1D transverse field Ising model through the exact diagonalization approach. We also calculate the ground state energy of the same model in the thermodynamic limit by performing gradient-based optimization of uniform matrix product states. By programming these computation tasks in a fully differentiable way, one can efficiently handle the dominant eigen-decomposition of very large matrices while still sharing various advantages of differentiable programming paradigm, notably the generic nature of the implementation and free of tedious human efforts of deriving gradients analytically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源