论文标题
经典类型中的(CO)伴随的司司的剩余类别
Residual categories for (co)adjoint Grassmannians in classical types
论文作者
论文摘要
在我们的上一篇论文中,我们提出了一个猜想,将光滑的Fano品种的小量子同胞环与其衍生的相干滑轮类别的结构有关。在这里,我们概括了这种猜想,使其更加精确,并通过(CO)伴随的均质品种的示例简单代数类型$ a_n $和$ d_n $,即frag flag strieties $ fl(1,n; n; n; n+1)$ and n; n; n+1)$ and n;特别是,我们在每个人中构建了与整个自动形态群体相对于整个自动形态群体不变的。对于$ og(2,2n)$,这是第一个被证明已满的特殊收藏。
In our previous paper we suggested a conjecture relating the structure of the small quantum cohomology ring of a smooth Fano variety to the structure of its derived category of coherent sheaves. Here we generalize this conjecture, make it more precise, and support by the examples of (co)adjoint homogeneous varieties of simple algebraic groups of Dynkin types $A_n$ and $D_n$, i.e., flag varieties $Fl(1,n;n+1)$ and isotropic orthogonal Grassmannians $OG(2,2n)$; in particular we construct on each of those an exceptional collection invariant with respect to the entire automorphism group. For $OG(2,2n)$ this is the first exceptional collection proved to be full.