论文标题
II型中微子Seesaw机制从SUSY破坏机制的NMSSM扩展
Type-II neutrino seesaw mechanism extension of NMSSM from SUSY breaking mechanisms
论文作者
论文摘要
我们建议分别从GMSB和AMSB(G)NMSSM中经济地适应II型中微子Seesaw机制。中微子Seesaw机制中的沉重三胞胎被确定为使者。因此,$μ$ - 问题,中微子质量产生,LFV以及软Susy断裂参数也可以在经济上以非平凡的方式合并。讨论了此类扩展的一般特征。 II型中微子SeeSAW特异性相互作用可以为NMSSM的软SUSY断裂参数提供额外的Yukawa挠度贡献,这些参数是必不可少的,以实现成功的EWSB并容纳125 GEV Higgs。还给出了相关的数值结果,包括暗物质的约束和可能的LFV过程$ l_i \ rightarrowl_jγ$等。我们发现,我们经济的II型中微子SEESAW机制从AMSB或GMSB的NMSSM扩展可能会导致现实的低能NMSSM频谱,都承认125 GEV Higgs是最轻的CP-even标量。在GMSB型方案中,125 GEV Higgs是近乎最高的CP标量,这是由EWSB,Collider和Precision测量的限制所排除的。 125 GEV Higgs是AMSB型场景中近乎最高的CP标量的可能性,这是通过暗物质直接检测实验排除的。 LFV过程的可能约束$ l_i \ rightarrowl_jγ$可以为Messenger量表提供上限。
We propose to accommodate economically the type-II neutrino seesaw mechanism in (G)NMSSM from GMSB and AMSB, respectively. The heavy triplets within neutrino seesaw mechanism are identified to be the messengers. Therefore, the $μ$-problem, the neutrino mass generation, LFV as well the soft SUSY breaking parameters can be economically combined in a non-trivial way. General features of such extensions are discussed. The type-II neutrino seesaw-specific interactions can give additional Yukawa deflection contributions to the soft SUSY breaking parameters of NMSSM, which are indispensable to realize successful EWSB and accommodate the 125 GeV Higgs. Relevant numerical results, including the constraints of dark matter and possible LFV processes $l_i\rightarrow l_j γ$ etc, are also given. We find that our economical type-II neutrino seesaw mechanism extension of NMSSM from AMSB or GMSB can lead to realistic low energy NMSSM spectrum, both admitting the 125 GeV Higgs as the lightest CP-even scalar. The possibility of the 125 GeV Higgs being the next-to-lightest CP-even scalar in GMSB-type scenario is ruled out by the constraints from EWSB, collider and precision measurements. The possibility of the 125 GeV Higgs being the next-to-lightest CP-even scalar in AMSB-type scenario is ruled out by dark matter direct detection experiments. Possible constraints from LFV processes $l_i\rightarrow l_j γ$ can give an upper bound for the messenger scale.