论文标题

深度学习以发现和预测惯性多种多样的动态

Deep learning to discover and predict dynamics on an inertial manifold

论文作者

Linot, Alec J., Graham, Michael D.

论文摘要

开发了一个数据驱动的框架来代表惯性歧管(IM)上的混沌动力学,并应用于库拉莫托 - sivashinsky方程的解决方案。一种结合线性和非线性(神经网络)尺寸的混合方法在整个状态空间和IM上的坐标之间变化。其他神经网络可以预测IM上的时间进化。形式主义解释了翻译不变性和节能,并且基本上优于降低线性尺寸,从而再现了吸引子的非常好的关键动态和统计特征。

A data-driven framework is developed to represent chaotic dynamics on an inertial manifold (IM), and applied to solutions of the Kuramoto-Sivashinsky equation. A hybrid method combining linear and nonlinear (neural-network) dimension reduction transforms between coordinates in the full state space and on the IM. Additional neural networks predict time-evolution on the IM. The formalism accounts for translation invariance and energy conservation, and substantially outperforms linear dimension reduction, reproducing very well key dynamic and statistical features of the attractor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源