论文标题

Burchnall-Chaundy理论

Burchnall-Chaundy Theory

论文作者

Klein, Sebastian, Lübcke, Eva, Schmidt, Martin Ulrich, Simon, Tobias

论文摘要

Burchnall-Chaundy理论涉及所有对通勤差异操作员的分类。我们用集成系统的光谱数据语言用这种理论来表达这一理论。 特别是,我们定义了等级1交换代数的光谱数据。我们解决了此类数据的逆问题,即,我们证明了代数$ a $(本质上)由其光谱数据唯一决定。 $ a $的异构类型由基础光谱曲线独特地确定。

The Burchnall-Chaundy theory concerns the classification of all pairs of commuting ordinary differential operators. We phrase this theory in the language of spectral data for integrable systems. In particular, we define spectral data for rank 1 commutative algebras $A$ of ordinary differential operators. We solve the inverse problem for such data, i.e. we prove that the algebra $A$ is (essentially) uniquely determined by its spectral data. The isomorphy type of $A$ is uniquely determined by the underlying spectral curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源