论文标题

一致性在3、5和7中具有模块化功能的系数,两极在0

Congruences for coefficients of modular functions in levels 3, 5, and 7 with poles at 0

论文作者

Jenkins, Paul, Keck, Ryan

论文摘要

我们给出了$ p \ in \ {3,5,7 \} $的$ p \ of pol $ p \ in \ {3,5,7 \}的$,仅在0级$ p $的傅立叶系数中,只有0时,就回答了安德森(Andersen)和第一作者和作者和莫斯(Moss and Moss)所做的持续工作的问题。一致性涉及一个模量,该模量取决于模块化表格在$ \ infty $上消失的基本$ p $扩展。

We give congruences modulo powers of $p \in \{3, 5,7\}$ for the Fourier coefficients of certain modular functions in level $p$ with poles only at 0, answering a question posed by Andersen and the first author and continuing work done by the authors and Moss. The congruences involve a modulus that depends on the base $p$ expansion of the modular form's order of vanishing at $\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源