论文标题

不对称的分层网络具有细心的互动,用于基于可解释的评论建议

Asymmetrical Hierarchical Networks with Attentive Interactions for Interpretable Review-Based Recommendation

论文作者

Dong, Xin, Ni, Jingchao, Cheng, Wei, Chen, Zhengzhang, Zong, Bo, Song, Dongjin, Liu, Yanchi, Chen, Haifeng, de Melo, Gerard

论文摘要

最近,推荐系统能够通过利用用户提供的评论来大大提高建议。现有方法通常将给定用户或项目的所有评论合并到长文档中,然后以相同的方式处理用户和项目文档。但是,实际上,这两套评论截然不同:用户的评论反映了他们购买的各种项目,因此在其主题上是非常异构的,而项目的评论仅与该项目有关,因此是局部均匀的。在这项工作中,我们开发了一种新型的神经网络模型,该模型通过不对称的细心模块正确地解决了这种重要差异。用户模块学会仅处理与目标项目相关的那些信号,而项目模块学习提取有关项目属性的最显着内容。我们的多层次结构范式说明了以下事实:所有评论都不同样有用,也不是每个评论中的句子都同样有用。各种实际数据集的广泛实验结果证明了我们方法的有效性。

Recently, recommender systems have been able to emit substantially improved recommendations by leveraging user-provided reviews. Existing methods typically merge all reviews of a given user or item into a long document, and then process user and item documents in the same manner. In practice, however, these two sets of reviews are notably different: users' reviews reflect a variety of items that they have bought and are hence very heterogeneous in their topics, while an item's reviews pertain only to that single item and are thus topically homogeneous. In this work, we develop a novel neural network model that properly accounts for this important difference by means of asymmetric attentive modules. The user module learns to attend to only those signals that are relevant with respect to the target item, whereas the item module learns to extract the most salient contents with regard to properties of the item. Our multi-hierarchical paradigm accounts for the fact that neither are all reviews equally useful, nor are all sentences within each review equally pertinent. Extensive experimental results on a variety of real datasets demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源