论文标题
球形对称的完美液体中的强曲面裸奇异点塌陷
Strong curvature naked singularities in spherically symmetric perfect fluid collapse
论文作者
论文摘要
我们在这里研究了由于球形对称的不均匀折叠云而形成的本地裸体奇异性,就其强度而言,具有非零的各向同性压力。克拉克(Clarke)和克拉拉克(Krolak)提供的足够条件已用于tipler strong,已用于限制代表物理半径和即将移出的径向径向径向无效中心的非线性关系的参数。研究塌陷云的终端状态需要有关崩溃动态的信息,这在一般情况下是未知的。因此,我们研究了对质量不均匀尘埃的小扰动,使用此处开发的形式主义,这是可能的。反过来,这种扰动的质量轮廓会导致非零压力。我们显示了一组非零的初始数据集合,从而引起了如此强的曲率裸奇异性。
We investigate here the locally naked singularity formed due to a spherically symmetric inhomogeneous collapsing cloud having non-zero isotropic pressure, in terms of its strength. Sufficient condition provided by Clarke and Krolak for it to be Tipler strong has been used to restrict the parameters that represent the non-linear relation between the physical radius and the radial coordinate of the outgoing radial null geodesic at the singular center. Studying end state of a collapsing cloud requires information about the dynamics of collapse, which is unknown in a general scenario. Hence we study small perturbations to the mass profile for inhomogeneous dust, which is possible using the formalism developed here. This perturbed mass profile, in turn, gives rise to non-zero pressure. We show the existence of a non-zero measure set of initial data giving rise to such strong curvature naked singularity.