论文标题
基于SMT的机器人过渡维修
SMT-based Robot Transition Repair
论文作者
论文摘要
状态机是机器人行为的常见模型。过渡函数通常依赖于参数化条件来对控制器建模前提,其中参数的正确值取决于与环境或特定机器人有关的因素。在没有特定校准程序的情况下,机器人必须通过一系列反复试验来艰苦地调整参数。在此过程中,确定机器人何时采取了不正确的操作,应该执行的操作很简单,但是找到正确的参数值可能很困难。我们提出了一种我们称为的替代方法,即基于交互式SMT的机器人过渡修复。在执行过程中,我们记录了过渡函数的执行跟踪,我们要求机器人识别机器人错误过渡的一些实例,以及正确的过渡应该是什么。用户根据要修复的错误类型提供这些校正,对轨迹的自动分析部分评估了每种校正的过渡函数。然后将这种约束系统制定为MaxSMT问题,其中解决方案是对满足最大约束数量的参数的最小调整。为了确定准确捕获用户意图并概括为新方案的维修,通过迭代将约束添加到MAXSMT问题中以产生替代维修的集合来探索解决方案。我们使用来自多个领域的状态机器进行测试,包括机器人足球和自动驾驶,并评估基于求解器的修复对求解器的选择和优化超参数。我们的结果表明,SRTR可以修复各种状态机器和错误类型1)迅速,2)较少的校正,而3)不校正过度校正状态机器并损害广义性能。
State machines are a common model for robot behaviors. Transition functions often rely on parameterized conditions to model preconditions for the controllers, where the correct values of the parameters depend on factors relating to the environment or the specific robot. In the absence of specific calibration procedures a roboticist must painstakingly adjust the parameters through a series of trial and error experiments. In this process, identifying when the robot has taken an incorrect action, and what should be done is straightforward, but finding the right parameter values can be difficult. We present an alternative approach that we call, interactive SMT-based Robot Transition Repair. During execution we record an execution trace of the transition function, and we ask the roboticist to identify a few instances where the robot has transitioned incorrectly, and what the correct transition should have been. A user supplies these corrections based on the type of error to repair, and an automated analysis of the traces partially evaluates the transition function for each correction. This system of constraints is then formulated as a MaxSMT problem, where the solution is a minimal adjustment to the parameters that satisfies the maximum number of constraints. In order to identify a repair that accurately captures user intentions and generalizes to novel scenarios, solutions are explored by iteratively adding constraints to the MaxSMT problem to yield sets of alternative repairs. We test with state machines from multiple domains including robot soccer and autonomous driving, and we evaluate solver based repair with respect to solver choice and optimization hyperparameters. Our results demonstrate that SRTR can repair a variety of states machines and error types 1) quickly, 2) with small numbers of corrections, while 3) not overcorrecting state machines and harming generalized performance.