论文标题

几何扭转,4型,黎曼双重和精髓

Geometric torsion, 4-form, Riemann duals and Quintessence

论文作者

Nitish, R., Kar, Supriya

论文摘要

我们在$(4+1)$尺寸中重新审视了一个繁殖几何扭转$ {\ cal H} _3 $,并带有更新的利息。我们表明,配对对称$ 4 $ TH订单曲率张量是由两种形式的Neveu-Schwarz(NS)以$ u(1)$级理论公式提出的。有趣的是,新的时空曲率控制着由两种形式的NS磁场提出的无扭转几何形状,并具有Riemann Tensor的性质。另一方面,该配方中的完全反对称的$ 4 $ TH订单张量显示出动态的几何扭转校正,并被认为是通过非扰动校正来识别的。事实证明,四种形式为$ u(1)$规数不变的NS表格。我们表明,可以用轴子标量来优雅地描述出来的重力理论,可能意味着与Riemann型几何形状的典型耦合。适当地制定曲率以获取$ d $$ = $$ 12 $ epranent {\ it form}理论。调查表明,一对$(m {\ bar m})_ {10} $ - Brane在事件范围内创建。我们表明,以脱钩极限为单位的新兴$ m $理论可以与$ n $$ = $$ 1 $ supergravity in $ d $$ = $$ 11 $识别。

We revisit an emergent gravity scenario in $(4+1)$ dimensions underlying a propagating geometric torsion ${\cal H}_3$ with a renewed interest. We show that a pair-symmetric $4$th order curvature tensor is sourced by a two-form Neveu-Schwarz (NS) in a $U(1)$ gauge theoretic formulation. Interestingly the new space-time curvature governs a torsion free geometry sourced by a two-form NS field and shares the properties of the Riemann tensor. On the other hand, a completely anti-symmetric $4$th order tensor in the formulation is shown to incorporate a dynamical geometric torsion correction and is argued to be identified with a non-perturbative correction. The four-form turns out to be $U(1)$ gauge invariant underlying an onshell NS form. We show that an emergent gravity theory may elegantly be described with an axionic scalar presumably signifying a quintessence coupling to the Riemann type geometries. The curvatures are appropriately worked out to obtain a $d$$=$$12$ emergent {\it form} theory. Investigation reveals that a pair of $(M{\bar M})_{10}$-brane is created across an event horizon. We show that an emergent $M$ theory in a decoupling limit identifies with the bosonic sector of $N$$=$$1$ Supergravity in $d$$=$$11$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源