论文标题

深度残留的密度U-NET,以提高加速MRI采集的分辨率

Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI Acquisition

论文作者

Ding, Pak Lun Kevin, Li, Zhiqiang, Zhou, Yuxiang, Li, Baoxin

论文摘要

典型的磁共振成像(MRI)扫描可能需要20到60分钟。减少MRI扫描时间对患者经验和成本考虑因素都是有益的。通过获取更少的K空间数据(在K空间中进行下采样),可以实现加速的MRI扫描。但是,这导致了重建图像的分辨率降低和混叠伪像。有许多现有的方法试图从下采样的K空间数据中重建高质量的图像,并具有不同的复杂性和性能。近年来,已经提出了有关此任务的深度学习方法,并报告了有希望的结果。尽管如此,这个问题仍然具有挑战性,尤其是因为在大多数使用重建的MRI图像的医学应用中的高保真度要求。在这项工作中,我们提出了一种深入学习方法,旨在重建加速MRI获取的高质量图像。具体而言,我们使用卷积神经网络(CNN)学习使用类似U-Net的架构的别名图像和原始图像之间的差异。此外,引入了一个微体系结构称为残留密集块(RDB),以学习比普通U-NET更好的特征表示。考虑到下采样的K空间数据的特殊性,我们为学习中的损失函数介绍了一个新的术语,该术语在培训过程中有效地采用了给定的K-Space数据,以提供有关网络权重更新的其他正则化。为了评估提出的方法,我们将其与其他最先进的方法进行了比较。在使用标准指标的视觉检查和评估中,所提出的方法能够提高性能,并证明其提供有效解决方案的潜力。

Typical Magnetic Resonance Imaging (MRI) scan may take 20 to 60 minutes. Reducing MRI scan time is beneficial for both patient experience and cost considerations. Accelerated MRI scan may be achieved by acquiring less amount of k-space data (down-sampling in the k-space). However, this leads to lower resolution and aliasing artifacts for the reconstructed images. There are many existing approaches for attempting to reconstruct high-quality images from down-sampled k-space data, with varying complexity and performance. In recent years, deep-learning approaches have been proposed for this task, and promising results have been reported. Still, the problem remains challenging especially because of the high fidelity requirement in most medical applications employing reconstructed MRI images. In this work, we propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition. Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images, employing a U-Net-like architecture. Further, a micro-architecture termed Residual Dense Block (RDB) is introduced for learning a better feature representation than the plain U-Net. Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data during training to provide additional regularization on the update of the network weights. To evaluate the proposed approach, we compare it with other state-of-the-art methods. In both visual inspection and evaluation using standard metrics, the proposed approach is able to deliver improved performance, demonstrating its potential for providing an effective solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源