论文标题

种子库树的形状

The shape of a seed bank tree

论文作者

Casanova, Adrián González, Peñaloza, Lizbeth, Siri-Jégousse, Arno

论文摘要

当初始样品的大小增长到无穷大时,我们得出了种子库合并的总,活性和不活跃的分支长度的渐近行为。这些随机变量对在某些种子库效应(例如植物和细菌)以及某些结构化种群(如群体)的情况下进化的种群具有重要的应用。证明依赖于对对应于第一次停用谱系重新激活的停止时间的研究。我们还为随机分区提供条件采样公式,并在谱系第一次停用时研究系统。所有这些结果都很好地了解了种子库合并的块计数过程的不同制度和行为。

We derive the asymptotic behavior of the total, active and inactive branch lengths of the seed bank coalescent, when the size of the initial sample grows to infinity. Those random variables have important applications for populations evolving under some seed bank effects, such as plants and bacteria, and for some cases of structured populations like metapopulations. The proof relies on the study of the tree at a stopping time corresponding to the first time that a deactivated lineage reactivates. We also give conditional sampling formulas for the random partition and we study the system at the time of the first deactivation of a lineage. All these results provide a good picture of the different regimes and behaviors of the block-counting process of the seed bank coalescent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源