论文标题

带有动态戒指的移动机器人实时探索,重新审视

Live Exploration with Mobile Robots in a Dynamic Ring, Revisited

论文作者

Mandal, Subhrangsu, Molla, Anisur Rahaman, Moses Jr, William K.

论文摘要

图形探索问题需要一组移动机器人,最初任意放置在图表的节点上,以协作探索图形,以便最终至少一个机器人访问了每个节点。探索的一个重要要求是{\ em终止}条件,即机器人必须知道勘探已经完成。最近在[Di Luna等,ICDCS 2016]中引入了使用移动机器人对动态环的实时探索问题。在其中,他们提出了多种算法,以解决完全同步和半同步设置的探索,并在涉及2美元的机器人时,并提供各种保证。他们还提供了保证,通过某些假设,不可能使用两个机器人探索环。剩下的一个重要的问题是,$ 3 $机器人的存在将如何影响结果。在本文中,我们尝试在完全同步的设置中解决这个问题,并展示如何将结果扩展到半同步设置。 特别是,我们使用$ 3 $机器人以及(i)机器人和边缘交叉检测能力的唯一ID(即,两个机器人在同一回合的边缘向相反的方向移动),或(ii)访问随机性的算法,以及(i)(i)(i)唯一的ID(即,两个机器人通过相反的方向移动),或(ii)访问随机性。确定性算法的时间复杂性在渐近上是最佳的。我们还提供互补的不可能结果,表明没有任何$ 2 $机器人的明确终止算法。我们算法的理论分析和综合模拟显示了动态环中算法的有效性和效率。我们还提出了一种算法,可以在半同步设置中使用$ 3 $机器人进行部分终止探索。

The graph exploration problem requires a group of mobile robots, initially placed arbitrarily on the nodes of a graph, to work collaboratively to explore the graph such that each node is eventually visited by at least one robot. One important requirement of exploration is the {\em termination} condition, i.e., the robots must know that exploration is completed. The problem of live exploration of a dynamic ring using mobile robots was recently introduced in [Di Luna et al., ICDCS 2016]. In it, they proposed multiple algorithms to solve exploration in fully synchronous and semi-synchronous settings with various guarantees when $2$ robots were involved. They also provided guarantees that with certain assumptions, exploration of the ring using two robots was impossible. An important question left open was how the presence of $3$ robots would affect the results. In this paper, we try to settle this question in a fully synchronous setting and also show how to extend our results to a semi-synchronous setting. In particular, we present algorithms for exploration with explicit termination using $3$ robots in conjunction with either (i) unique IDs of the robots and edge crossing detection capability (i.e., two robots moving in opposite directions through an edge in the same round can detect each other), or (ii) access to randomness. The time complexity of our deterministic algorithm is asymptotically optimal. We also provide complementary impossibility results showing that there does not exist any explicit termination algorithm for $2$ robots. The theoretical analysis and comprehensive simulations of our algorithm show the effectiveness and efficiency of the algorithm in dynamic rings. We also present an algorithm to achieve exploration with partial termination using $3$ robots in the semi-synchronous setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源