论文标题
量化的轨道座液金属杂质二聚体由集成的飞行员波段指导
Quantized orbital-chasing liquid metal heterodimers directed by an integrated pilot-wave field
论文作者
论文摘要
通过与液滴浴撞击期间其生成的局部波场相互作用,在振动浴场上维持的毫米弹跳液滴变成了移动波源(粒子)。凭借这种颗粒波偶性,宏观流体动力系统模仿了量子领域的神秘行为。在这里,我们表明可以通过放大的浴毛细管来创建一个集成的飞行员波场,以更好地规定液滴轨迹。这是通过液态金属液滴浴系统证明的,在该系统中,液滴弹跳产生的局部波场是由浴缸弯曲诱导的全局波场超级弹跳所产生的。所得的双试验波配置可实现多级流体动力陷阱(轨道)中两个绑定相差液滴(异二聚体)的一类定向追逐运动,其中有两个量化的制度参数,即互互行的互动级别和轨道级别。我们研究了振动液体金属浴的动力学,其水平分布环场及其特殊的涡流场被突出显示。我们还通过考虑由集成的前锋波场介导的互助颗粒波的相互作用来合理化异国情调的液滴运动。据揭示,由于尺寸不匹配,异二聚体中两个液滴之间的时间弹跳相移导致其水平推进,而它们的空间结合方案则独家决定了集体捕获方向。进一步证明,水平的轨内追逐运动与垂直液滴弹跳直接相关。我们的发现揭示了集成的飞行员波场,作为通向改进的液滴引导的踪迹,从而将流体动力学颗粒波的类比扩展到光学系统及其他地区。
A millimetric bouncing droplet sustained on a vibrating bath becomes a moving wave source (particle) through periodically interacting with the local wave field it generates during the droplet-bath impact. By virtue of such particle-wave duality, the macroscopic hydrodynamic system imitates enigmatic behaviors of the quantum realm. Here we show that it is possible to create an integrated pilot-wave field to better prescribe the droplet trajectories, via amplified bath capillarity. This is demonstrated with a liquid metal droplet-bath system in which the local wave field generated by droplet bouncing is superposed by the global wave field induced by bath meniscus oscillation. The resulting dual pilot-wave configuration enables a class of directional chasing motions of two bound dissimilar droplets (heterodimers) in multilevel hydrodynamic traps (orbits), featuring two quantized regime parameters, namely the interdroplet binding level and the orbit level. We investigate the dynamics of the vibrating liquid metal bath, with its level-split ring wave field and its peculiar vortex field being highlighted. We also rationalize the exotic droplet motions by considering the interdroplet particle-wave interactions mediated by the integrated pilot-wave field. It is revealed that a temporal bouncing phase shift between the two droplets in the heterodimers, due to size mismatch, gives rise to their horizontal propulsion, while their spatial binding regime exclusively determines the collective chasing direction. It is further evidenced that the horizontal in-orbit chasing motion is directly related to vertical droplet bouncing. Our findings unveil the integrated pilot-wave field as a trail towards improved droplet guiding, thereby extending the hydrodynamic particle-wave analogy to optical systems and beyond.