论文标题
2015年6月的Quasar 3C 279巨型爆发的同步加速器伽马射线发射模型:通过电磁级联反应快速重新连接或随机加速?
Synchrotron Gamma-Ray Emission Model of the Giant Outburst of Quasar 3C 279 in 2015 June: Fast Reconnection or Stochastic Acceleration with Electromagnetic Cascade?
论文作者
论文摘要
我们使用时间依赖的数值模拟在2015年观察到的Blazar 3C 279的非常明亮的Gamma-ray耀斑测试同步加速器发射方案。大量的洛伦兹因子高达100,可以将同步加速器的最大能量带到GEV能量范围以上。我们找到了X射线对伽马射线光谱的两个可能的解决方案。一个是磁性重新连接模型所建议的及时电子注入模型。由于次级电子 - 旋律对,磁场太强的磁场产生的X射线通量太亮。即使在迅速的电子注入模型中,po弹的透明度光度最多也与伽马射线或电子光度相当。另一个模型是随机加速模型,该模型导致伴随电磁级联反应和二级电子 - 尖齿对的重新加速的非常独特的图像。在此模型中,与伽马射线和电子相比,磁场的能量预算非常低。
We test the synchrotron emission scenario for the very bright gamma-ray flare of blazar 3C 279 observed in 2015 June using time-dependent numerical simulations. A bulk Lorentz factor as high as 100 can bring the synchrotron maximum energy above the GeV energy range. We find two possible solutions for the X-ray to gamma-ray spectrum. One is a prompt electron injection model with a hard power-law index as magnetic reconnection models suggest. A too strong magnetic field yields a too bright synchrotron X-ray flux due to secondary electron--positron pairs. Even in the prompt electron injection model, the Poynting flux luminosity is at most comparable to the gamma-ray or electron luminosity. Another model is the stochastic acceleration model, which leads to a very unique picture accompanying the electromagnetic cascade and re-acceleration of the secondary electron--positron pairs. In this model, the energy budget of the magnetic field is very low compared to gamma rays and electrons.