论文标题

浮力驱动的分散体在液体二元混合物的限制干燥中

Buoyancy-driven dispersion in confined drying of liquid binary mixtures

论文作者

Salmon, Jean-Baptiste, Doumenc, Frédéric

论文摘要

我们研究了浮力液体混合物(非挥发性溶质$+$溶剂)中浮力质量传输的影响,该液体混合物限制在垂直于重力的缝隙中。缝隙一端的溶剂蒸发会引起溶质浓度梯度,进而驱动自由对流,因为溶质和溶剂的密度之间的差异。从完整的模型耦合质量传输和流体动力学中,我们首先使用标准的泰勒样方法来得出一个一维非线性的对流 - 分散方程,描述了稀释混合物的溶质浓度过程。然后,我们使用该方程式的缩放分析和渐近解决方案对预期状态进行完整的分析。使用与完整模型和1D对流分散方程的数值分辨率进行彻底比较证实了这种方法的有效性。我们的结果表明,浮力驱动的自由对流始终会在长期尺度上影响溶质质量传输,从而以沿裂缝稳步增加长度尺度分散溶质。除了这种狭窄的干燥配置之外,我们的工作还提供了一种简单的方法,可以评估浮力在涉及浓度梯度的任何其他微流体构型中与大规模运输的相关性。

We investigate the impact of buoyancy on the solute mass transport in an evaporating liquid mixture (non-volatile solute $+$ solvent) confined in a slit perpendicular to the gravity. Solvent evaporation at one end of the slit induces a solute concentration gradient which in turn drives free convection due to the difference between the densities of the solutes and the solvent. From the complete model coupling mass transport and hydrodynamics, we first use a standard Taylor-like approach to derive a one dimensional non-linear advection-dispersion equation describing the solute concentration process for a dilute mixture. We then perform a complete analysis of the expected regimes using both scaling analysis and asymptotic solutions of this equation. The validity of this approach is confirmed using a thorough comparison with the numerical resolution of both the complete model and the 1D advection-dispersion equation. Our results show that buoyancy-driven free convection always impacts solute mass transport at long time scales, dispersing solutes in a steadily increasing length scale along the slit. Beyond this confined drying configuration, our work also provides an easy way for evaluating the relevance of buoyancy on mass transport in any other microfluidic configuration involving concentration gradients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源