论文标题

心电图细分的深度学习

Deep Learning for ECG Segmentation

论文作者

Moskalenko, Viktor, Zolotykh, Nikolai, Osipov, Grigory

论文摘要

我们提出了一种使用UNET样的全趋化神经网络进行心电图(ECG)分割的算法。该算法作为输入接收任意采样率ECG信号,并给出了P和T波和QRS复合物作为输出的启用和偏移列表。我们的分割方法在速度方面不同于其他参数,少量参数和良好的概括:它适应不同的采样率,并且已推广到各种类型的ECG监视器。就质量而言,所提出的方法优于其他最先进的细分方法。尤其是,用于检测P和T波的吞吐量和偏移以及QRS复合物的F1测量分别为97.8%,99.5%和99.9%。

We propose an algorithm for electrocardiogram (ECG) segmentation using a UNet-like full-convolutional neural network. The algorithm receives an arbitrary sampling rate ECG signal as an input, and gives a list of onsets and offsets of P and T waves and QRS complexes as output. Our method of segmentation differs from others in speed, a small number of parameters and a good generalization: it is adaptive to different sampling rates and it is generalized to various types of ECG monitors. The proposed approach is superior to other state-of-the-art segmentation methods in terms of quality. In particular, F1-measures for detection of onsets and offsets of P and T waves and for QRS-complexes are at least 97.8%, 99.5%, and 99.9%, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源