论文标题

对逼真的激光轮廓的方位角分解研究,用于有效建模激光韦克菲尔德加速度

Azimuthal decomposition study of a realistic laser profile for efficient modeling of Laser WakeField Acceleration

论文作者

Zemzemi, Imen, Massimo, Francesco, Beck, Arnaud

论文摘要

超短强度激光器的出现为激光 - 血浆相互作用物理学的新的,有前途但充满挑战的研究领域铺平了道路。构建Petawatt飞秒激光器的成功,例如法国的Apollon激光器,将有助于理解和设计未来的粒子加速器和下一代光源。实现这一目标本质上取决于实验与大规模平行模拟之间的组合。到目前为止,粒子中的粒子(PIC)代码已成为准确描述激光 - 血浆相互作用的最终工具,尤其是在激光韦克赛场加速(LWFA)领域。然而,3D中激光等离子体加速器的数值建模可能是一项非常具有挑战性的任务。这是由于此过程中涉及的量表之间的分散性很大。为了使此类模拟具有显着的速度,我们需要使用降低的数值模型来简化问题,同时保留高忠诚度。在这些模型中,圆柱形几何形状的方位角模式中的傅立叶场分解是一个有希望的还原模型,尤其是在LWFA中的圆柱形对称性的物理问题上,这是一个接近圆柱形对称性的物理问题。该几何形状已在麦克斯韦求解器的有限差时间域(FDTD)离散方案中实现。在本文中,我们将研究来自Apollon设施的现实激光测量的情况,该方法正确描述它的能力以及为此目的确定必要数量的模式数量。我们还将在逼真的激光轮廓中表明较高模式包含的重要性,以确保模拟中的保真度。

The advent of ultra short high intensity lasers has paved the way to new and promising, yet challenging, areas of research in the laser-plasma interaction physics. The success of constructing petawatt femtosecond lasers, for instance the Apollon laser in France, will help understanding and designing future particle accelerators and next generation of light sources. Achieving this goal intrinsically relies on the combination between experiments and massively parallel simulations. So far, Particle-In-Cell (PIC) codes have been the ultimate tool to accurately describe the laser-plasma interaction especially in the field of Laser WakeField Acceleration (LWFA) . Nevertheless, the numerical modelling of laser plasma accelerators in 3D can be a very challenging task. This is due to the large dispersity between the scales involved in this process. In order to make such simulations feasible with a significant speed up, we need to use reduced numerical models which simplify the problem while retaining a high fidelity. Among these models, Fourier field decomposition in azimuthal modes for the cylindrical geometry is a promising reduced model especially for physical problems that have close to cylindrical symmetry which is the case in LWFA. This geometry has been implemented in the open-source code Smilei in Finite Difference Time Domain (FDTD) discretization scheme for the Maxwell solver. In this paper we will study the case of a realistic laser measurement from Apollon facility, the ability of this method to describe it correctly and the determination of the necessary number of modes for this purpose. We will also show the importance of higher modes inclusion in the case of realistic laser profiles to insure fidelity in simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源