论文标题
关于霍姆格伦的广义原理,拉梅操作员将其应用于反弹性问题
On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems
论文作者
论文摘要
考虑LAMé操作员$ \ MATHCAL {L}(\ MATHBF {U}):=μδ\ MathBf {U}+(λ+μ)\ nabla(\ nabla \ cdot \ cdot \ cdot \ cdot \ cdot \ mathbf {u})$。本文研究了(广义)laméeigenFunction $ \ mathbf {u} $的几何特性,即$ - \ m athcal {l}(\ Mathbf {u})=κ\κ\ mathbf {u} $ in \ mathbb in \ mathbb { l^2(ω)^2 $,$ω\ subset \ mathbb {r}^2 $。我们在$ω$中介绍了$ \ mathbf {u} $的所谓同质行段,$ \ mathbf {u} $,其牵引力或通过阻抗参数的组合正在消失。我们为表征一个或两个这样的线段的存在及其对$ \ Mathbf {u} $的独特性的影响进行了全面研究。结果可以被认为是将经典的霍姆格伦(Holmgren)在两个方面概括为Lamé运营商的独特原理。我们通过分析$ \ mathbf {u} $的分析微局部奇异性的开发来建立结果,并在上述线段的存在下。最后,我们将结果应用于建立两个新颖的唯一可识别性结果时的反弹性问题。结果表明,可以通过使用最多四个远场模式来确定广义阻抗障碍物及其边界阻抗。通过最少数量的远场模式来确定唯一的确定是反弹性散射理论的一个长期问题。
Consider the Lamé operator $\mathcal{L}(\mathbf{ u} ) :=μΔ\mathbf{u}+(λ+μ) \nabla(\nabla \cdot \mathbf{ u} )$ that arises in the theory of linear elasticity. This paper studies the geometric properties of the (generalized) Lamé eigenfunction $\mathbf{u}$, namely $-\mathcal{L}(\mathbf{ u} )=κ\mathbf{ u}$ with $κ\in\mathbb{R}_+$ and $\mathbf{ u}\in L^2(Ω)^2$, $Ω\subset\mathbb{R}^2$. We introduce the so-called homogeneous line segments of $\mathbf{u}$ in $Ω$, on which $\mathbf{u}$, its traction or their combination via an impedance parameter is vanishing. We give a comprehensive study on characterizing the presence of one or two such line segments and its implication to the uniqueness of $\mathbf{u}$. The results can be regarded as generalizing the classical Holmgren's uniqueness principle for the Lamé operator in two aspects. We establish the results by analyzing the development of analytic microlocal singularities of $\mathbf{u}$ with the presence of the aforesaid line segments. Finally, we apply the results to the inverse elastic problems in establishing two novel unique identifiability results. It is shown that a generalized impedance obstacle as well as its boundary impedance can be determined by using at most four far-field patterns. Unique determination by a minimal number of far-field patterns is a longstanding problem in inverse elastic scattering theory.