论文标题
知识追踪的领域适应
Domain Adaption for Knowledge Tracing
论文作者
论文摘要
随着在线教育系统的快速发展,旨在预测学生知识状态的知识追踪正在成为个性化教育中的至关重要和基本任务。传统上,现有方法是域指的。但是,现实世界中有更多的域(例如,学科,学校),在某些域中缺乏数据,如何利用其他域中的知识和信息来帮助培训目标域知识追踪模型的知识追踪模型越来越重要。我们将此问题称为知识追踪(DAKT)的领域适应,其中包含两个方面:(1)如何实现每个领域中的知识追踪性能。 (2)如何在域之间传输良好的执行知识追踪模型。为此,在本文中,我们提出了一个新颖的适应性框架,即适应性知识追踪(AKT)来解决DAKT问题。具体而言,在第一个方面,我们将基于深度知识跟踪(DKT)的教育特征(例如滑倒,猜测,问题文本)结合在一起,以获得良好的执行知识追踪模型。在第二方面,我们提出并采用三个领域的适应过程。首先,我们预先培训自动编码器,以选择目标模型培训的有用源实例。其次,我们在最大平均差异(MMD)测量中最小化特定领域的知识状态分布差异以实现域的适应性。第三,我们采用微调来处理以下问题:源和目标域的输出维度不同以使模型适合目标域。在两个私人数据集和七个公共数据集上进行的广泛实验结果清楚地证明了AKT对出色的知识追踪性能及其卓越的可转移能力的有效性。
With the rapid development of online education system, knowledge tracing which aims at predicting students' knowledge state is becoming a critical and fundamental task in personalized education. Traditionally, existing methods are domain-specified. However, there are a larger number of domains (e.g., subjects, schools) in the real world and the lacking of data in some domains, how to utilize the knowledge and information in other domains to help train a knowledge tracing model for target domains is increasingly important. We refer to this problem as domain adaptation for knowledge tracing (DAKT) which contains two aspects: (1) how to achieve great knowledge tracing performance in each domain. (2) how to transfer good performed knowledge tracing model between domains. To this end, in this paper, we propose a novel adaptable framework, namely adaptable knowledge tracing (AKT) to address the DAKT problem. Specifically, for the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model. For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training. Second, we minimize the domain-specific knowledge state distribution discrepancy under maximum mean discrepancy (MMD) measurement to achieve domain adaptation. Third, we adopt fine-tuning to deal with the problem that the output dimension of source and target domain are different to make the model suitable for target domains. Extensive experimental results on two private datasets and seven public datasets clearly prove the effectiveness of AKT for great knowledge tracing performance and its superior transferable ability.