论文标题

量子厅状态的纠缠和广义的Chern-Simons表格

Entanglement for Quantum Hall states and a Generalized Chern-Simons Form

论文作者

Nair, V. P.

论文摘要

我们分析了与相对论田间理论和非交通性几何形状的思想相比,整数量子厅状态($ν= 1 $)的纠缠熵的某些特征。对于有限的状态类别,模块化操作员的光谱与现场理论的情况或类型$ {\ rm III} _1 $ von Neumann代数相似。我们提出的论点是,纠缠熵对背景字段和几何数据(例如自旋连接)的主要部分是由广义的Chern-Simons形式给出的。简要评论了这种结果对将非交通性几何形状,熵和重力的思想汇总在一起的含义。

We analyze some features of the entanglement entropy for an integer quantum Hall state ($ν=1 $) in comparison with ideas from relativistic field theory and noncommutative geometry. The spectrum of the modular operator, for a restricted class of states, is shown to be similar to the case of field theory or a type ${\rm III}_1$ von Neumann algebra. We present arguments that the main part of the dependence of the entanglement entropy on background fields and geometric data such as the spin connection is given by a generalized Chern-Simons form. Implications of this result for bringing together ideas of noncommutative geometry, entropy and gravity are briefly commented upon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源