论文标题
光谱上限,用于对称稳定过程的扭转功能
Spectral upper bound for the torsion function of symmetric stable processes
论文作者
论文摘要
我们证明了对称稳定过程的扭转功能的频谱上限,该过程可为$ \ Mathbb {r}^d $中的凸域提供。我们的界限是明确的,并在$ d $中捕获了正确的增长顺序,从而改善了Giorgi and Smits(2010)和Biswas andLőRinczi(2019)的现有结果。在此过程中,我们朝着陈的扭转类似物(2005)的扭转类似物迈进,对布朗运动的下属特征值估计值。
We prove a spectral upper bound for the torsion function of symmetric stable processes that holds for convex domains in $\mathbb{R}^d$. Our bound is explicit and captures the correct order of growth in $d$, improving upon the existing results of Giorgi and Smits (2010) and Biswas and Lőrinczi (2019). Along the way, we make progress towards a torsion analogue of Chen and Song's (2005) two-sided eigenvalue estimates for subordinate Brownian motion.