论文标题

深点:实时概率密集的单眼大满贯

DeepFactors: Real-Time Probabilistic Dense Monocular SLAM

论文作者

Czarnowski, Jan, Laidlow, Tristan, Clark, Ronald, Davison, Andrew J.

论文摘要

从单眼图像估算丰富的几何形状和相机运动的能力对于未来的交互式机器人技术和增强现实应用是基础。已经提出了不同的方法,即场景几何表示(稀疏地标,密集地图),用于优化多视图问题的一致性指标以及学习率的先验。我们提出了一个大满贯系统,该系统将这些方法统一在概率框架中,同时仍保持实时性能。这是通过使用学习的紧凑型深度图表示并重新制定三种不同类型的错误来实现的:光度法,重新注入和几何,我们在标准因子图软件中使用了这些错误。我们对现实世界序列上的轨迹估计和深度重建进行评估,并列出了估计密集几何形状的各种示例。

The ability to estimate rich geometry and camera motion from monocular imagery is fundamental to future interactive robotics and augmented reality applications. Different approaches have been proposed that vary in scene geometry representation (sparse landmarks, dense maps), the consistency metric used for optimising the multi-view problem, and the use of learned priors. We present a SLAM system that unifies these methods in a probabilistic framework while still maintaining real-time performance. This is achieved through the use of a learned compact depth map representation and reformulating three different types of errors: photometric, reprojection and geometric, which we make use of within standard factor graph software. We evaluate our system on trajectory estimation and depth reconstruction on real-world sequences and present various examples of estimated dense geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源