论文标题

稀疏随机图中的大麻的条件,具有固定度序列

A condition for Hamiltonicity in Sparse Random Graphs with a Fixed Degree Sequence

论文作者

Johansson, Tony

论文摘要

我们考虑随机图$ g_ {n,{\ bf d}} $从所有图的集合中随机选择的所有图表均以给定的稀疏度序列$ {\ bf d} $。我们假设$ {\ bf d} $至少具有至少4个,最多只能是电源法,并在其尾巴上再放置一个条件。对于$ k \ ge 2 $定义$β_K(g)= \ max e(a,b) + k(| a | - | b |) - d(a)$,最大值取得了discoint discoint vertex sets $ a,b $。结果表明,确定$ g_ {n,{\ bf d}} $是否包含汉密尔顿周期的问题减少到计算$β_2(g_ {n,{\ bf d}})$。如果$ k \ ge 2 $和$δ\ ge k+2 $,则确定$ g_ {n,{\ bf d}} $是否包含一个$ k $ -factor降低到计算$β_K(g_ {n,{n,{\ bf d}})$的问题。

We consider the random graph $G_{n, {\bf d}}$ chosen uniformly at random from the set of all graphs with a given sparse degree sequence ${\bf d}$. We assume ${\bf d}$ has minimum degree at least 4, at most a power law tail, and place one more condition on its tail. For $k\ge 2$ define $β_k(G) = \max e(A, B) + k(|A|-|B|) - d(A)$, with the maximum taken over disjoint vertex sets $A, B$. It is shown that the problem of determining if $G_{n, {\bf d}}$ contains a Hamilton cycle reduces to calculating $β_2(G_{n, {\bf d}})$. If $k\ge 2$ and $δ\ge k+2$, the problem of determining if $G_{n, {\bf d}}$ contains a $k$-factor reduces to calculating $β_k(G_{n, {\bf d}})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源