论文标题

张量图卷积网络用于文本分类

Tensor Graph Convolutional Networks for Text Classification

论文作者

Liu, Xien, You, Xinxin, Zhang, Xiao, Wu, Ji, Lv, Ping

论文摘要

与顺序学习模型相比,基于图的神经网络具有一些出色的特性,例如捕获全球信息的能力。在本文中,我们研究了基于图的神经网络,以解决文本分类问题。为此任务提供了一个新的框架TensorGCN(张量图卷积网络)。首先构建文本图张量来描述语义,句法和顺序上下文信息。然后,在文本图张量上执行两种传播学习。第一个是用于从单个图中从邻域节点汇总信息的图内传播。第二个是图间传播,用于协调图之间的异质信息。在基准数据集上进行了广泛的实验,结果说明了我们提出的框架的有效性。我们提出的TensorGCN提出了一种有效的方法来协调和整合来自不同类型图的异质信息。

Compared to sequential learning models, graph-based neural networks exhibit some excellent properties, such as ability capturing global information. In this paper, we investigate graph-based neural networks for text classification problem. A new framework TensorGCN (tensor graph convolutional networks), is presented for this task. A text graph tensor is firstly constructed to describe semantic, syntactic, and sequential contextual information. Then, two kinds of propagation learning perform on the text graph tensor. The first is intra-graph propagation used for aggregating information from neighborhood nodes in a single graph. The second is inter-graph propagation used for harmonizing heterogeneous information between graphs. Extensive experiments are conducted on benchmark datasets, and the results illustrate the effectiveness of our proposed framework. Our proposed TensorGCN presents an effective way to harmonize and integrate heterogeneous information from different kinds of graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源