论文标题

在浅软圈和深层岩石圈中的锆石存活率

Zircon survival in shallow asthenosphere and deep lithosphere

论文作者

Borisova, Anastassia Y., Bindeman, Ilya N., Toplis, Mike, Zagrtdenov, Nail, Guignard, Jérémy, Safonov, Oleg, Bychkov, Andrew, Shcheka, Svyatoslav, Melnik, Oleg E., Marchelli, Marion, Fenrenbach, Jerome

论文摘要

锆石是最常用的矿物质,用于与陆地和外星岩石约会。但是,镁铁质/超镁铁质熔体中的锆石系统很少经过实验探索,并且基于Felsic,中间和/或合成系统的大多数现有模型可能不适用于预测陆生浅层层层层次磷酸磷层中的锆石存活。为了确定这种天然系统中的锆石稳定性,我们在天然中洋脊底层和合成的单倍碱性融化中进行了锆石溶解的高温实验,并在高电流下进行实验性产物的原位电子探针微分析。 考虑到电子微探针分析期间锆石玻璃对中的二次荧光效应,我们计算了预测锡利氏盆地底层底层小层融化的锆石生存所必需的锆扩散系数。数据表明,典型的100微米锆石会迅速溶解(在10小时内),并在地幔压力下与玄武岩熔体的反应一致。我们观察到在天然中洋脊室中锆石在低压下以及在升高压力下的单倍巴萨熔体中观察到锆石在天然中山脊层中的不一致性(晶体ZRO2和SIO2)的不一致。我们的实验数据提出了有关镁铁质和超镁铁质岩石中锆石的起源的问题,尤其是在浅海洋软圈和深层岩石圈中,以及根据这些矿物质组成所估算的基于锆石的含义的含义。金伯利岩,橄榄岩,碱性玄武岩和其他岩浆中的大型锆石巨晶表明,锆石和熔体之间的快速运输和短相互作用。

Zircon is the most frequently used mineral for dating terrestrial and extraterrestrial rocks. However, the system of zircon in mafic/ultramafic melts has been rarely explored experimentally and most existing models based on the felsic, intermediate and/or synthetic systems are probably not applicable for prediction of zircon survival in terrestrial shallow asthenosphere. In order to determine the zircon stability in such natural systems, we have performed high-temperature experiments of zircon dissolution in natural mid-ocean ridge basaltic and synthetic haplobasaltic melts coupled with in situ electron probe microanalyses of the experimental products at high current. Taking into account the secondary fluorescence effect in zircon glass pairs during electron microprobe analysis, we have calculated zirconium diffusion coefficient necessary to predict zircon survival in asthenospheric melts of tholeiitic basalt composition. The data imply that typical 100 micron zircons dissolve rapidly (in 10 hours) and congruently upon the reaction with basaltic melt at mantle pressures. We observed incongruent (to crystal ZrO2 and SiO2 in melt) dissolution of zircon in natural mid-ocean ridge basaltic melt at low pressures and in haplobasaltic melt at elevated pressure. Our experimental data raise questions about the origin of zircons in mafic and ultramafic rocks, in particular, in shallow oceanic asthenosphere and deep lithosphere, as well as the meaning of the zircon-based ages estimated from the composition of these minerals. Large size zircon megacrysts in kimberlites, peridotites, alkali basalts and other magmas suggest the fast transport and short interaction between zircon and melt.The origin of zircon megacrysts is likely related to metasomatic addition of Zr into mantle as any mantle melting episode should obliterate them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源