论文标题
建模和解决多模式的汽车和乘车共享问题
Modeling and solving the multimodal car- and ride-sharing problem
论文作者
论文摘要
我们介绍了多模式的汽车和乘车共享问题(MMCRP),其中使用一台汽车来涵盖一套乘车请求,而未发现的请求则分配给其他运输方式(MOT)。汽车的路线由一次或多个旅行组成。每次旅行都必须具有特定但非预先确定的驱动程序,以仓库开始,然后以(可能不同的)仓库结束。即使两个骑行没有相同的起源和/或目的地,也允许在用户之间共享骑行。用户始终可以根据各个首选项列表使用其他运输方式。 该问题可以作为车辆调度问题提出。为了解决该问题,构建了一个辅助图,在该图中,每次旅行在仓库中的启动和结尾,并覆盖可能的乘车共享,以时空图中的形式建模为ARC。我们提出了一种基于列生成的两层分解算法,其中主问题可确保最多只能涵盖每个请求,并且定价问题通过解决时空网络中的一种最短路径问题来生成新的有希望的路线。报告了基于现实实例的计算实验。基准实例基于奥地利维也纳的人口,空间和经济数据。我们通过在合理时间内基于柱生成的方法来解决大型实例,并进一步研究了各种精确和启发式定价方案。
We introduce the multimodal car- and ride-sharing problem (MMCRP), in which a pool of cars is used to cover a set of ride requests while uncovered requests are assigned to other modes of transport (MOT). A car's route consists of one or more trips. Each trip must have a specific but non-predetermined driver, start in a depot and finish in a (possibly different) depot. Ride-sharing between users is allowed, even when two rides do not have the same origin and/or destination. A user has always the option of using other modes of transport according to an individual list of preferences. The problem can be formulated as a vehicle scheduling problem. In order to solve the problem, an auxiliary graph is constructed in which each trip starting and ending in a depot, and covering possible ride-shares, is modeled as an arc in a time-space graph. We propose a two-layer decomposition algorithm based on column generation, where the master problem ensures that each request can only be covered at most once, and the pricing problem generates new promising routes by solving a kind of shortest-path problem in a time-space network. Computational experiments based on realistic instances are reported. The benchmark instances are based on demographic, spatial, and economic data of Vienna, Austria. We solve large instances with the column generation based approach to near optimality in reasonable time, and we further investigate various exact and heuristic pricing schemes.