论文标题
带有扭曲的Kane-Mele:准晶型高阶拓扑绝缘子,带有分数质量扭结
Kane-Mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks
论文作者
论文摘要
我们建立了一个分析性低能理论,描述了准晶体系统中的高阶拓扑绝缘体(HOTI)阶段。我们将其应用于由两个堆叠的Haldane型号组成的模型,该模型具有相对的传播边缘模式,类似于Kane-Mele模型,并具有$ 30^\ Circ $ twist。我们表明,HOTI的特征是拐角处所得的局部模式与常规质量反转无关,而与我们的“分数质量扭结”相关联。通过概括低能量理论,我们为任意$ n $倍的旋转对称性建立了一个分类。我们还得出了双层中的角模式与单层披露模式之间的关系。通过使用数字超出弱耦合极限,我们表明,由于准二氧化序列性,还会出现额外差距的层次结构,后者也藏有角落位置模式。
We establish an analytic low-energy theory describing higher-order topological insulator (HOTI) phases in quasicrystalline systems. We apply this to a model consisting of two stacked Haldane models with oppositely propagating edge modes, analogous to the Kane-Mele model, and with a $30^\circ$ twist. We show that the resulting localized modes at corners, characteristic of a HOTI, are not associated with conventional mass inversions but are instead associated with what we dub "fractional mass kinks". By generalizing the low-energy theory, we establish a classification for arbitrary $ n $-fold rotational symmetries. We also derive a relationship between corner modes in a bilayer and disclination modes in a single layer. By using numerics to go beyond the weak-coupling limit, we show that a hierarchy of additional gaps occurs due to the quasiperiodicity, which also harbor corner-localized modes.