论文标题
快速大规模边界元素算法
Fast large-scale boundary element algorithms
论文作者
论文摘要
边界元素方法(BEM)将域中的部分微分方程减少到域边界上的积分方程。它们对于解决无界域上的问题特别有吸引力,但是处理与积分运算符相对应的密集矩阵需要有效的算法。 本文介绍了两种方法,使我们能够在由数百万个三角形组成的表面网格上求解边界元素方程,同时保留了盖尔金离散化的最佳收敛速率。
Boundary element methods (BEM) reduce a partial differential equation in a domain to an integral equation on the domain's boundary. They are particularly attractive for solving problems on unbounded domains, but handling the dense matrices corresponding to the integral operators requires efficient algorithms. This article describes two approaches that allow us to solve boundary element equations on surface meshes consisting of several millions of triangles while preserving the optimal convergence rates of the Galerkin discretization.