论文标题
非线性PDE的有限亚树种的定性特性
Qualitative properties of bounded subsolutions of nonlinear PDEs
论文作者
论文摘要
我们研究了$δ_{p} u \geqλ(u)$的正溶液的衰减和紧凑型支撑性能,其在旋转对称性的完整歧管的外观上。在同一环境中,我们还根据全局$ w^{1,p} $ - 这种解决方案的规律性,对$ p $ -laplacian的随机完整性进行了新的特征。我们使用的工具之一是我们在Riemannian歧管上进行调查的非线性版本的非线性版本,并在整体RICCI曲率条件下建立。
We study decay and compact support properties of positive and bounded solutions of $Δ_{p} u \geq Λ(u)$ on the exterior of a compact set of a complete manifold with rotationally symmetry. In the same setting, we also give a new characterization of stochastic completeness for the $p$-Laplacian in terms of a global $W^{1,p}$-regularity of such solutions. One of the tools we use is a nonlinear version of the Feller property which we investigate on general Riemannian manifolds and which we establish under integral Ricci curvature conditions.