论文标题
垂直气体积聚会影响气体巨大气氛的碳与氧气比
Vertical gas accretion impacts the carbon-to-oxygen ratio of gas giant atmospheres
论文作者
论文摘要
最近的理论,数值和观察性工作表明,当生长的星球在其磁盘上张开缝隙时,气体流入间隙的流动是由气体从至少一个气体尺度高度的高度垂直下降的主导。我们的主要目的是首次包括在中平面上方会产生的化学效果,将对产生的c/o产生。我们将气体的积聚在不同的磁盘半径上开始,并跟踪气体和小冰晶粒的化学成分,以预测其大气中所得的碳与氧气比(C/O)。在我们的模型中,所有的行星都开始向内进化60 au,在气盘上张开一个空隙,因此,垂直积聚的气体对化学影响。从这个垂直流中得出了两个重要的结论:(1)更多的富含氧气的冰灰尘可在行星气氛中吸收。 (2)气体的化学成分主导着磁盘的内部行星的最终C/O($ <$ 20 au)。这意味着,随着詹姆斯·韦伯(James Webb)太空望远镜的推出,我们可以追踪设定超球星氛围化学成分的磁盘材料。
Recent theoretical, numerical, and observational work have suggested that when a growing planet opens a gap in its disk the flow of gas into the gap is dominated by gas falling vertically from a height of at least one gas scale height. Our primary objective is to include, for the first time, the chemical impact that accreting gas above the midplane will have on the resulting C/O. We compute the accretion of gas onto planetary cores beginning at different disk radii and track the chemical composition of the gas and small icy grains to predict the resulting carbon-to-oxygen ratio (C/O) in their atmospheres. In our model, all of the planets which began their evolution inward of 60 AU open a gap in the gas disk, and hence are chemically affected by the vertically accreting gas. Two important conclusions follow from this vertical flow: (1) more oxygen rich icy dust grains become available for accretion onto the planetary atmosphere. (2) The chemical composition of the gas dominates the final C/O of planets in the inner ($<$ 20 AU) part of the disk. This implies that with the launch of the James Webb Space Telescope we can trace the disk material that sets the chemical composition of exoplanetary atmospheres.