论文标题
FRAZ:科学浮点数据的通用高保真固定比率有损压缩框架
FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data
论文作者
论文摘要
随着高性能计算应用程序产生的科学浮点数据的不断增加,大大降低了科学的浮点数据大小至关重要,并且已经开发了错误控制的有损压缩机。但是,现有的科学浮点损失数据压缩机都没有支持有效的固定比率有损压缩。然而,科学浮点数据的固定比率有损压缩不仅会压缩到请求的比率上,而且还尊重用户指定的误差,限制了较高的保真度。在本文中,我们提出FRAZ:一个通用的固定比例有损压缩框架,尊重用户指定的错误约束。贡献是双重的。 (1)我们开发了一种有效的迭代方法,以基于目标压缩比准确确定不同损耗压缩机的适当误差设置。 (2)我们使用来自不同域中的几个真实世界的科学浮点数据集,对我们提出的固定比率压缩框架进行了彻底的性能和准确性评估。实验表明,FRAZ有效地标识了任何给定损耗压缩机的整个误差设置空间中的最佳误差设置。尽管固定比率有损压缩比固定错误压缩慢,但它为非常大的科学浮点数据集的用户提供了一种重要的新损耗压缩技术。
With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets.