论文标题

在周期性驾驶下的非线性两模式系统的浮雕特征谱:“环”结构的出现

Floquet eigenspectra of a nonlinear two-mode system under periodic driving: the emergence of "ring" structures

论文作者

Lyu, Guitao, Lim, Lih-King, Watanabe, Gentaro

论文摘要

我们研究了非线性两模式系统的浮雕特征,在定期驾驶非对角线耦合下。通过以数值为单位求解毛皮的pitaevskii方程,我们在不同的浮子分支的交叉点附近获得三角形和环结构。在较低的驾驶频率下,我们发现与众所周知的环结构不同的“环”和“双环”结构。讨论了这些结构出现的机理,并通过分析获得了它们存在的参数窗口。此外,我们研究了在驾驶中使用绝热扫描的系统的演变,并发现在浮雕特征谱中有一些动态不稳定的状态破坏了量子的绝热性。

We study Floquet eigenspectra of a nonlinear two-mode system under a periodic driving of the off-diagonal coupling. By solving the Gross-Pitaevskii equation numerically, we obtain triangular and loop structures near the crossings of different Floquet branches. At lower driving frequencies, we find "ring" and "double-ring" structures which are distinct from the well-known loop structure. The mechanism of the emergence of these structures is discussed and the parameter windows of their existence are obtained analytically. In addition, we study the evolution of the system under the driving with an adiabatic sweep and find there are some dynamically unstable states in the Floquet eigenspectra which break the quantum adiabaticity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源