论文标题

FedVision:由联邦学习提供动力的在线视觉对象检测平台

FedVision: An Online Visual Object Detection Platform Powered by Federated Learning

论文作者

Liu, Yang, Huang, Anbu, Luo, Yun, Huang, He, Liu, Youzhi, Chen, Yuanyuan, Feng, Lican, Chen, Tianjian, Yu, Han, Yang, Qiang

论文摘要

视觉对象检测是一种基于计算机视觉的人工智能(AI)技术,具有许多实际应用(例如,火灾危害监测)。但是,由于隐私问题和传输视频数据的高昂成本,在当前方法之后,在中央存储的大型培训数据集上构建对象检测模型是高度挑战的。联邦学习(FL)是解决这一挑战的一种有前途的方法。尽管如此,目前缺乏易于使用的工具来使不是联合学习专家的计算机视觉应用程序开发人员,可以方便地利用这项技术并将其应用于其系统。在本文中,我们报告了FedVision-一个机器学习工程平台,以支持联合学习动力的计算机视觉应用程序的开发。该平台通过网络和极端愿景之间的合作进行了部署,以帮助客户在智能城市应用程序中开发基于计算机的安全监控解决方案。在使用四个月的时间里,它实现了大幅提高和降低成本,同时消除了为三个主要公司客户传输敏感数据的需求。据我们所知,这是FL在基于计算机视觉的任务中的第一个真实应用。

Visual object detection is a computer vision-based artificial intelligence (AI) technique which has many practical applications (e.g., fire hazard monitoring). However, due to privacy concerns and the high cost of transmitting video data, it is highly challenging to build object detection models on centrally stored large training datasets following the current approach. Federated learning (FL) is a promising approach to resolve this challenge. Nevertheless, there currently lacks an easy to use tool to enable computer vision application developers who are not experts in federated learning to conveniently leverage this technology and apply it in their systems. In this paper, we report FedVision - a machine learning engineering platform to support the development of federated learning powered computer vision applications. The platform has been deployed through a collaboration between WeBank and Extreme Vision to help customers develop computer vision-based safety monitoring solutions in smart city applications. Over four months of usage, it has achieved significant efficiency improvement and cost reduction while removing the need to transmit sensitive data for three major corporate customers. To the best of our knowledge, this is the first real application of FL in computer vision-based tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源