论文标题

网络攻击检测得益于机器学习算法

Cyber Attack Detection thanks to Machine Learning Algorithms

论文作者

Delplace, Antoine, Hermoso, Sheryl, Anandita, Kristofer

论文摘要

这些年来,网络安全攻击的频率和复杂性都在增长。这种越来越复杂的复杂性要求在防御策略中进步和持续创新。传统的入侵检测方法和深度数据包检查虽然仍然在很大程度上使用和推荐,但不再足以满足增长的安全威胁的需求。随着计算能力的增加和成本下降,机器学习被视为一种替代方法,也可以作为防御麦芽糖,僵尸网络和其他攻击的其他机制。本文通过检查其在网络中对恶意流量进行分类的功能来探讨机器学习作为可行解决方案。 首先,进行了强大的数据分析,从而从初始NetFlow数据集中提取了22个提取功能。然后,通过特征选择过程将所有这些功能彼此进行比较。然后,我们的方法分析了五种不同的机器学习算法针对包含常见僵尸网络的NetFlow数据集。在13个场景中的8个中,随机森林分类器成功地检测了超过95%的僵尸网络,而最困难的数据集中则超过55%。最后,有洞察力是为了改善和推广结果,尤其是通过引导技术。

Cybersecurity attacks are growing both in frequency and sophistication over the years. This increasing sophistication and complexity call for more advancement and continuous innovation in defensive strategies. Traditional methods of intrusion detection and deep packet inspection, while still largely used and recommended, are no longer sufficient to meet the demands of growing security threats. As computing power increases and cost drops, Machine Learning is seen as an alternative method or an additional mechanism to defend against malwares, botnets, and other attacks. This paper explores Machine Learning as a viable solution by examining its capabilities to classify malicious traffic in a network. First, a strong data analysis is performed resulting in 22 extracted features from the initial Netflow datasets. All these features are then compared with one another through a feature selection process. Then, our approach analyzes five different machine learning algorithms against NetFlow dataset containing common botnets. The Random Forest Classifier succeeds in detecting more than 95% of the botnets in 8 out of 13 scenarios and more than 55% in the most difficult datasets. Finally, insight is given to improve and generalize the results, especially through a bootstrapping technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源