论文标题

紧凑空间上的缩回和封闭子集的家族

Families of retractions and families of closed subsets on compact spaces

论文作者

Garcia-Ferreira, S., Aparicio, C. Yescas

论文摘要

众所周知,Valdivia紧凑型空间的特征是特殊的缩回系列,称为$ r $ -skeleton(请参阅\ cite {kubis1})。我们也知道,有$ r $ skeletons的紧凑型空间不是瓦尔迪维亚。在本文中,我们将研究$ r $ $ - 平面和特别的紧凑型空间子集的特殊家庭。我们证明,如果$ x $是零维紧凑空间,而$ \ {r_s:s \ inγ\} $是$ x $上的$ r $ -skeleton,则$ | r_s(x)| \leqΩ$对于γ$中的所有$ s \,然后$ x $具有由孤立点组成的密集子集。另外,我们为$ r $ skeleton提供条件,以便可以将这种$ r $ skeleton扩展到基本空间的Alexandroff副本上的$ r $ skeleton。 Valdivia紧凑型空间的标准定义是通过单位间隔的功率的$σ$产生的。在这个事实之后,我们通过将$ x $与$ x $与单位间隔的合适功率嵌入到$ x $上的$π$ - 骨骼以及一对$(\ mathcal {f},φ)$中,其中$ \ nathcal {f} $是$ x $ $ x $ $ $ $ $ $ $ $ $ $ $ x $ $ x $ - mathcal {f} $ nimate $ x $ - $ $ $ - $ - $ - $ $ - $ - $ - $ - $ - $ - $ qumy-- $ - $ qum- niws and-ymone。这个新的概念概括了$σ$ - 产品的想法。 我们证明,紧凑的空间接受了伸缩式骨骼,如果它承认了$π$ - 骨骼。这种等效性允许给出一个新的证据,证明具有缩减骨骼的紧凑空间的乘积允许伸缩式骨骼(请参阅\ cite {cuth1})。在\ cite {casa1}中,Corson紧凑型空间的特征是特殊的封闭子集。遵循此方向,我们介绍了弱$ c $ - 骨骼的概念,在某些条件下,瓦尔迪维亚紧凑型空间和带有$ r $ skeletons的紧凑空间的特征。

It is know that the Valdivia compact spaces can be characterized by a special family of retractions called $r$-skeleton (see \cite{kubis1}). Also we know that there are compact spaces with $r$-skeletons which are not Valdivia. In this paper, we shall study $r$-squeletons and special families of closed subsets of compact spaces. We prove that if $X$ is a zero-dimensional compact space and $\{r_s:s\in Γ\}$ is an $r$-skeleton on $X$ such that $|r_s(X)| \leq ω$ for all $s\in Γ$, then $X$ has a dense subset consisting of isolated points. Also we give conditions to an $r$-skeleton in order that this $r$-skeleton can be extended to an $r$-skeleton on the Alexandroff Duplicate of the base space. The standard definition of a Valdivia compact spaces is via a $Σ$-product of a power of the unit interval. Following this fact we introduce the notion of $π$-skeleton on a compact space $X$ by embedding $X$ in a suitable power of the unit interval together with a pair $(\mathcal{F},φ)$, where $\mathcal{F}$ is family of metric separable subspaces of $X$ and $φ$ an $ω$-monotone function which satisfy certain properties. This new notion generalize the idea of a $Σ$-product. We prove that a compact space admits a retractional-skeleton iff it admits a $π$-skeleton. This equivalence allows to give a new proof of the fact that the product of compact spaces with retractional-skeletons admits an retractional-skeleton (see \cite{cuth1}). In \cite{casa1}, the Corson compact spaces are characterized by a special family of closed subsets. Following this direction, we introduce the notion of weak $c$-skeleton which under certain conditions characterizes the Valdivia compact spaces and compact spaces with $r$-skeletons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源