论文标题
用于重力量子状态精确研究的磁磁陷阱
A magneto-gravitational trap for precision studies of gravitational quantum states
论文作者
论文摘要
观察时间是提高反射表面上方悬浮颗粒的重力量子状态的测量精度的关键参数。我们提出了一种在这种原子,抗原子,中子和其他具有磁矩的颗粒的新方法。地球引力场和反射镜沿垂直方向限制颗粒。磁场起源于通过垂直线的电流限制径向方向的颗粒。在适当的条件下,沿这两个方向的运动被高度解耦。我们估计问题的特征参数,并列出可能由于两个动作的耦合而限制存储时间的可能效应。在低粒子速度和磁场的极限下,陷阱中粒子运动和较长存储时间的精确控制可以为重力,光学和高精细光谱提供理想的条件:对于敏感性验证了抗湿生基原子的等效原理的敏感验证;为了提高原子和抗体的光学和高精细光谱的准确性;用于改善与中子,原子和抗体实验的额外基本相互作用的限制。
Observation time is the key parameter for improving the precision of measurements of gravitational quantum states of particles levitating above a reflecting surface. We propose a new method of long confinement in such states of atoms, anti-atoms, neutrons and other particles possessing a magnetic moment. The Earth gravitational field and a reflecting mirror confine particles in the vertical direction. The magnetic field originating from electric current passing through a vertical wire confines particles in the radial direction. Under appropriate conditions, motions along these two directions are decoupled to a high degree. We estimate characteristic parameters of the problem, and list possible systematic effects that limit storage times due to the coupling of the two motions. In the limit of low particle velocities and magnetic fields, precise control of the particle motion and long storage times in the trap can provide ideal conditions for both gravitational, optical and hyperfine spectroscopy: for the sensitive verification of the equivalence principle for antihydrogen atoms; for increasing the accuracy of optical and hyperfine spectroscopy of atoms and antiatoms; for improving constraints on extra fundamental interactions from experiments with neutrons, atoms and antiatoms.