论文标题
Kähler空间的Kodaira问题,消失了第一堂课
The Kodaira problem for Kähler spaces with vanishing first Chern class
论文作者
论文摘要
令$ x $为普通的紧凑型kähler空间,具有KLT奇异性和扭转典范束。我们表明,$ x $承认,如果其本地琐碎的变形空间平滑,则可以任意小变形为投射品种。然后,我们证明,这种毫无疑问的假设在至少三种情况下存在:如果$ x $具有环形奇点,如果$ x $具有有限的奇异性,以及其切线纸条的第二个共同体学小组消失。
Let $X$ be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that $X$ admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if $X$ has toroidal singularities, if $X$ has finite quotient singularities, and if the second cohomology group of its tangent sheaf vanishes.