论文标题

热旋转和热电话中的自旋运输

Thermal spin transport and spin in thermoelectrics

论文作者

Heremans, Joseph P.

论文摘要

本文回顾了控制自旋,热和电荷联合运输的原理。与自旋转运相关的广泛热力学数量是磁化;它的onsager缀合力通常是自由能相对于磁化的衍生物。旋转以两种方式之一进行:(1)通过磁性金属和掺杂的半导体中的自旋极化的自由电子,或(2)通过自旋波(2)驻留在未填充的D-或F壳过渡金属或稀有元素上的局部电子上的自旋波(2)。该论文在单独的章节中涵盖了这两个案例。在这两种情况下,都可以定义一个自旋化学电位,其梯度是旋转转运的更实用的结合力。该论文进一步描述了具有强旋转轨道耦合的磁性和非磁性固体中的异常大厅,自旋大厅和反自旋大厅的效应,因为这些效果用于生成和测量自旋通量。接下来描述了跨界面的自旋传输,其中包括自旋泵送和自旋转移扭矩。然后,最后一章将所有这些概念放在一起,以描述旋转模型,自旋 - 胶状和镁拖拉效应,这些效应存在于铁磁,抗铁磁剂甚至顺磁固体中。尤其是少量拖拉,是一种高温作用,它通过数量级和半导体的数量级增加了金属的热电,在电子扩散热电图上方的20倍或3倍。这是唯一的例子,旋转驱动效应大于电荷驱动效果。镁阻力导致简单的二进制顺磁半导体MNTE具有ZT> 1而无需优化。这表明如何在热电学研究中添加自旋为附加设计参数是一种寻求高ZT材料的新方法。

This article reviews the principles that govern the combined transport of spin, heat, and charge. The extensive thermodynamic quantity associated with spin transport is the magnetization; its Onsager-conjugate force is in general the derivative of the free energy with respect to the magnetization. Spins are carried in one of two ways: (1) by spin-polarized free electrons in magnetic metals and doped semiconductors, or (2) by spin waves (magnons) that reside on localized electrons on unfilled d- or f-shells of transition metal or rare-earth elements. The paper covers both cases in separate chapters. In both cases, it is possible to define a spin chemical potential whose gradient is the more practical conjugate force to spin transport. The paper further describes the anomalous Hall, spin Hall, and inverse spin Hall effects in magnetic and non-magnetic solids with strong spin-orbit coupling because these effects are used to generate and measure spin fluxes. Spin transport across interfaces is described next, and includes spin pumping and spin transfer torque. The final chapter then puts all these concepts together to describe the spin-Seebeck, spin-Peltier, and magnon-drag effects, which exist in ferromagnetic, antiferromagnetic, and even paramagnetic solids. Magnon-drag, in particular, is a high-temperature effect that boosts the thermopower of metals by an order of magnitude and that of semiconductors by a factor of 2 or 3 above the electronic diffusion thermopower. This is the only example where a spin-driven effect is larger than a charge-driven effect. Magnon drag leads a simple binary paramagnetic semiconductor, MnTe, to have zT > 1 without optimization. This shows how adding spin as an additional design parameter in thermoelectrics research is a new and promising approach toward the quest for high-zT materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源