论文标题

有限群体的Chebotarev不变的上限

An upper bound on the Chebotarev invariant of a finite group

论文作者

Lucchini, Andrea, Tracey, Gareth

论文摘要

如果设置$ \ {g_1^{x_1},\ ldots,g_d^{x_d} {x_d} $ g $ g $ x_i \ x__i \。 $ g $的Chebotarev不变性$ c(g)$ of $ g $是随机变量$ n $的预期价值,这是最小的要求,要求$ n $随机选择$ g $的元素总是会产生$ g $。第一作者最近表明,对于某些绝对常数$β$,$ c(g)\leβ\ sqrt {| g |} $。在本文中,我们表明,当$ g $可溶时,$β$最多为$ 5/3 $。我们还表明这是最好的。此外,我们表明,对于每个$ε> 0 $,存在一个常数$C_ε$,因此$ c(g)\ le(1+ε)\ sqrt {| g |}+c_ε$。

A subset $\{g_1, \ldots , g_d\}$ of a finite group $G$ invariably generates $G$ if the set $\{g_1^{x_1}, \ldots, g_d^{x_d}\}$ generates $G$ for every choice of $x_i \in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of the random variable $n$ that is minimal subject to the requirement that $n$ randomly chosen elements of $G$ invariably generate $G$. The first author recently showed that $C(G)\le β\sqrt{|G|}$ for some absolute constant $β$. In this paper we show that, when $G$ is soluble, then $β$ is at most $5/3$. We also show that this is best possible. Furthermore, we show that, in general, for each $ε>0$ there exists a constant $c_ε$ such that $C(G)\le (1+ε)\sqrt{|G|}+c_ε$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源