论文标题
对本地化的重新归一化,而没有小参数
Renormalization to localization without a small parameter
论文作者
论文摘要
我们研究了在随机间隔颗粒的D维模型中的波函数定位性能,其各向同性跳跃电位仅取决于欧几里得间粒子间距离。由于该模型的普遍性通常称为欧几里得随机矩阵模型,因此它自然而然地在各种物理环境中出现,例如振动模式,人工原子系统,液体和玻璃,超速气体和光子定位现象。我们概括了已知的Burin-Levitov重新归一化组方法,在此类模型中制定了足以定位的普遍条件,并检查了欧几里得随机矩阵与翻译不变的远程晶格模型之间波功能空间衰减的显着等效性。
We study the wave function localization properties in a d-dimensional model of randomly spaced particles with isotropic hopping potential depending solely on Euclidean interparticle distances. Due to the generality of this model usually called the Euclidean random matrix model, it arises naturally in various physical contexts such as studies of vibrational modes, artificial atomic systems, liquids and glasses, ultracold gases and photon localization phenomena. We generalize the known Burin-Levitov renormalization group approach, formulate universal conditions sufficient for localization in such models and inspect a striking equivalence of the wave function spatial decay between Euclidean random matrices and translation-invariant long-range lattice models with a diagonal disorder.