论文标题

神经对话的自适应参数化

Adaptive Parameterization for Neural Dialogue Generation

论文作者

Cai, Hengyi, Chen, Hongshen, Zhang, Cheng, Song, Yonghao, Zhao, Xiaofang, Yin, Dawei

论文摘要

神经对话系统基于序列到序列(SEQ2SEQ)范式产生响应。通常,该模型配备了一组学习的参数,以生成给定输入上下文的响应。当面对多样化的对话时,其适应性相当有限,因此该模型容易产生通用响应。在这项工作中,我们提出了一个{\ bf ada} ptive {\ bf n} eural {\ bf d} ialogue生成模型,\ textsc {adand},该模型与特定于对话的参数化管理了各种对话。对于每个对话,该模型通过参考输入上下文来生成编码码编码器的参数。特别是,我们提出了两种自适应参数化机制:一种上下文感知和主题感知的参数化机制。上下文感知参数化直接通过捕获给定上下文的本地语义来生成参数。主题感知的参数化可以通过首先推断给定上下文的潜在主题在与类似主题的对话之间进行参数共享,然后在分布主题中生成参数。在大规模的真实世界对话数据集上进行的广泛实验表明,我们的模型在定量指标和人类评估方面都能达到卓越的性能。

Neural conversation systems generate responses based on the sequence-to-sequence (SEQ2SEQ) paradigm. Typically, the model is equipped with a single set of learned parameters to generate responses for given input contexts. When confronting diverse conversations, its adaptability is rather limited and the model is hence prone to generate generic responses. In this work, we propose an {\bf Ada}ptive {\bf N}eural {\bf D}ialogue generation model, \textsc{AdaND}, which manages various conversations with conversation-specific parameterization. For each conversation, the model generates parameters of the encoder-decoder by referring to the input context. In particular, we propose two adaptive parameterization mechanisms: a context-aware and a topic-aware parameterization mechanism. The context-aware parameterization directly generates the parameters by capturing local semantics of the given context. The topic-aware parameterization enables parameter sharing among conversations with similar topics by first inferring the latent topics of the given context and then generating the parameters with respect to the distributional topics. Extensive experiments conducted on a large-scale real-world conversational dataset show that our model achieves superior performance in terms of both quantitative metrics and human evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源