论文标题

磁盘几何形状中的非亚伯分数Chern绝缘子

Non-Abelian Fractional Chern Insulator in Disk Geometry

论文作者

He, Ai-Lei, Luo, Wei-Wei, Yao, Hong, Wang, Yi-Fei

论文摘要

具有准粒子遵守NA编织统计数据的非亚伯(NA)分数拓扑状态吸引了其基本性质和拓扑量子计算的前景。迄今为止,有许多模型提议实现NA分数拓扑状态,例如众所周知的摩尔读量子霍尔状态和非亚伯分数Chern绝缘子(NA-FCIS)。在这里,我们用装有三体硬核玻色子的圆盘几何形状中的Na-FCI研究了拓扑平面。稳定的$ν= 1 $玻色粒Na-FCI的特征是边缘激发和地面角动量。基于广义的保利原理和杰克多项式,我们成功地为NA-FCI构建了试验波函数。此外,随着现场相互作用的增加,出现了$ν= 1/2 $ abelian FCI状态,并且也可以在试验波函数的帮助下确定。我们的发现不仅导致NA-FCI的最佳波函数,而且直接为对配对拓扑状态的未来研究提供了有效的方法。

Non-Abelian (NA) fractional topological states with quasi-particles obeying NA braiding statistics have attracted intensive attentions for both its fundamental nature and the prospect for topological quantum computation. To date, there are many models proposed to realize the NA fractional topological states, such as the well-known Moore-Read quantum Hall states and the Non-Abelian fractional Chern insulators (NA-FCIs). Here, we investigate the NA-FCI in disk geometry with three-body hard-core bosons loaded into a topological flat band. This stable $ν= 1$ bosonic NA-FCI is characterized by the edge excitations and the ground-state angular momentum. Based on the generalized Pauli principle and the Jack polynomials, we successfully construct a trial wave function for the NA-FCI. Moreover, a $ν= 1/2$ Abelian FCI state emerges with the increase of the on-site interaction and it can be identified with the help of the trial wave function as well. Our findings not only lead to an optimal wave function for the NA-FCI, but also directly provide an effective approach for future researches on paired topological states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源