论文标题

构建保留A^X的Szasz-Mirakjan型操作员; a> 1

Construction of Szasz-Mirakjan-type operators which preserve a^x; a > 1

论文作者

Yadav, Rishikesh, Mishra, Vishnu Narayan

论文摘要

在本文中,我们介绍了一种新型的Szasz-Mirakjan操作员,该操作员保留了A^X,A> 1固定和X \ GEQ 0。我们通过使用一些辅助结果研究了操作员的均匀收敛性,并给出了误差估计。通过图形显示和分析上述运算符的收敛性,我们通过分析图形来发现比Szasz-Mirakjan运算符的收敛速度更好。研究了Voronovskaya型定理,并在与Szasz-Mirakjan操作员的凸感下进行了比较。在最后一部分中,在积分函数的空间中构建了一个修改的序列。

In this paper, we introduce a new type of Szasz-Mirakjan operators, which preserve a^x, a > 1 fixed and x\geq 0. We study uniform convergence of the operators by using some auxiliary results and also error estimation is given. The convergence of said operators are shown and analyzed by graphics, also in the same direction, we find a better rate of convergence than Szasz-Mirakjan operators by analyzing the graphics. Voronovskaya-type theorem is studied and a comparison is shown under a sense of convexity with Szasz- Mirakjan operators. In the last section, a modified sequence is constructed in the space of integral function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源